1. Analyses of the Variance model as we have discrete variable
aku<-aov(POD~treatment, data=data_shahzad_4)
anova(aku)
## Analysis of Variance Table
## Response: POD
## Df SumSq MeanSq F value Pr(>F)
## treatment 3 864 288.00 0.4092 0.7467
## Residuals 92 64746 703.76
2. Multiple comparisons test
aov.out<- aov(POD~treatment, data=data_shahzad_4)
LSD.test(aov.out,"treatment", console = TRUE)
Study: aov.out ~ "treatment"
## LSD t Test for POD
## Mean Square Error: 703.758
## treatment, means and individual ( 95 %) CI
## POD std r LCL UCL Min Max
## Compost 258.4262 26.64398 24 247.6714 269.1811 227.15 292.78
## Control 259.8725 22.40901 24 249.1177 270.6273 231.29 288.78
## Hydropriming 261.4633 30.43338 24 250.7085 272.2182 214.31 299.67
## Potassium nitrate 266.3896 26.01492 24 255.6347 277.1444 236.12 292.78
### Alpha: 0.05 ; DF Error: 92
## Critical Value of t: 1.986086
## least Significant Difference: 15.20965
## Treatments with the same letter are not significantly different.
## POD groups
## Potassium nitrate 266.3896 a
## Hydropriming 261.4633 a
## Control 259.8725 a
## Compost 258.4262 a
No comments:
Post a Comment