#--- Install following packages
install.packages("devtools")
library(devtools)
install_github("vqv/ggbiplot")
install_github("vqv/ggbiplot",force = TRUE)
library(ggbiplot)
#-----
mtcars.pca <- prcomp(mtcars[,c(1:7,10,11)], center = TRUE,scale. = TRUE)
summary(mtcars.pca)
Importance of components:
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9
Standard deviation 2.3782 1.4429 0.71008 0.51481 0.42797 0.35184 0.32413 0.2419 0.14896
Proportion of Variance 0.6284 0.2313 0.05602 0.02945 0.02035 0.01375 0.01167 0.0065 0.00247
Cumulative Proportion 0.6284 0.8598 0.91581 0.94525 0.96560 0.97936 0.99103 0.9975 1.00000ggbiplot(mtcars.pca)
ggbiplot(mtcars.pca, labels=rownames(mtcars))
mtcars.country <- c(rep("Japan", 3), rep("US",4), rep("Europe", 7),rep("US",3), "Europe", rep("Japan", 3), rep("US",4), rep("Europe", 3), "US", rep("Europe", 3))ggbiplot(mtcars.pca,ellipse=TRUE, labels=rownames(mtcars), groups=mtcars.country)
Reference: https://www.datacamp.com/tutorial/pca-analysis-r




No comments:
Post a Comment