1- Complete Randomized Design (CRD)
1.1 Analysis of Variance
aku<-lm(POD~treatment, data=data_shahzad_4)1.2 Multiple comparisons Test
aov.out<- aov(POD~treatment, data=data_shahzad_4)
LSD.test(aov.out,"treatment", console = TRUE)
2.Randomized Complete Block Design
2.1 Analysis of Variance
wina<- lm (POD~treatment+replication, data=data_shahzad_4)
anova(wina)
2.2 Multiple Comparison Test
LSD.test(winams,"treatment", console = TRUE)3. RCBD Factorial Design
3.1 Analysis of Variance
wina<- lm (POD~treatment+replication+variety+treatment:variety, data=data_shahzad_4)
anova(wina)
3.2 Multiple comparison test
LSD.test(data_shahzad_4$POD,
data_shahzad_4$treatment:data_shahzad_4$variety,
54.2, 78, console = TRUE)
4. Liner mixed model
4.1 Analysis of Variance
data_shahzad_4$plot <- factor(c(1:48,1:48))
POD.rlme <- lme(POD ~ Year*treatment*variety + replication,
random = ~1|plot/Year/replication,
data=data_shahzad_4)
anova(POD.rlme)
4.2 multiple comparisons Test
POD.rlsm <- lsmeans(POD.rlme, ~Year*treatment*variety, adjust="tukey")
POD.rcld <- cld(POD.rlsm, alpha=0.05, Letters=letters, adjust="tukey")
POD.rt <- POD.rcld[,c(1:4,9)]
POD.rt
5 RCBD Split Plot Design
kebe<-with(data_irfan,sp.plot(replication,Treatment,varities,plant_height))anova(kebe<)gla<-kebe$gl.a
glb<-kebe$gl.b
Ea<-kebe$gl.a
Eb<-kebe$gl.b
5.2 Multiple Comparison Test
5.2.1 Main effect of Treatment
ms<-with(data_irfan,LSD.test(plant_height,Treatment,gla,Ea, console = TRUE))5.2.2 Main effect of a variety
ms<-with(data_irfan,LSD.test(plant_height,varities,glb,Eb, console = TRUE))5.2.3 Interaction of Treatment and variety
ms<-with(data_irfan,LSD.test(plant_height,Treatment:varities,glb,Eb, console = TRUE))
No comments:
Post a Comment